PERGAMON

International Journal of Heat and Mass Transfer 45 (2002) 381-391

International Journal of

l'lEAT and MASS
TRANSFER

www.elsevier.com/locate/ijhmt

Solution of inverse heat conduction problems using
maximum entropy method

Sun Kyoung Kim, Woo Il Lee *

Department of Mechanical and Aerospace Engineering, San 56-1, Shinlim-dong, Kwanak-ku, Seoul 151-141,
Republic of Korea

Received 25 October 2000; received in revised form 23 March 2001

Abstract

A solution scheme based on the maximum entropy method (MEM) for the solution of one-dimensional inverse heat
conduction problem is proposed. The present work introduces MEM in order to build a robust formulation of the
inverse problem. MEM finds the solution which maximizes the entropy functional under the given temperature
measurements. In order to seek the most likely inverse solution, the present method converts the inverse problem to a
non-linear constrained optimization problem. The constraint of the problem is the statistical consistency between the
measured temperature and the estimated temperature. Successive quadratic programming (SQP) facilitates the maxi-
mum entropy estimation. The characteristic feature of the method is discussed with the sample numerical results. The
presented results show considerable enhancement in the resolution of the inverse problem and bias reduction in
comparison with the conventional methods. © 2001 Published by Elsevier Science Ltd.

1. Introduction

Inverse heat conduction problems (IHCP) aim to
determine the unknowns such as thermal conditions
[1,2], partially unknown geometry [3] and thermophysi-
cal properties [4] from known interior temperature his-
tory and distribution. Among such problems, the
determination of surface heat flux has been investigated
most extensively since it can be applied to a variety of
real-world problems including aerodynamic heating
during space vehicle reentry [5], quenching of metal
under forced convection [6] and hyperthermia treatment
[71-

Most difficulties in THCPs are due to its extreme
sensitivity to measurement errors, which incurs insta-
bility of the solution. In order to overcome such in-
stability and to obtain a reliable inverse solution, a
variety of numerical techniques have been proposed.
These techniques include the least-squares method with
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regularization [1,8], the sequential function specifica-
tion method (SFM) [1], space marching techniques
[9-12], and the gradient method utilizing the adjoint
problem [2]. A number of modifications to these
methods have been made to enhance the solution be-
havior involving accuracy and stability. Despite such
efforts, improvement in the resolution is limited by the
conventional methods mentioned above. In some cases,
the heat flux variation is so abrupt that the conven-
tional methods lead to a meaningless inverse solution.
Therefore, a stable way of enhancing the resolution
and reducing the bias is essential for accurate recovery
of the time-varying surface conditions with abrupt
changes.

In this paper, the maximum entropy method (MEM)
is introduced to IHCP to achieve the goal. MEM, which
is based on the probabilistic theory, allows seeking the
most likely inverse solution. MEM has been applied to
various ill-posed problems including image reconstruc-
tion [13], ill-posed partial differential equation [14] and
economic data recovery [15]. Generally, an inverse
problem can be treated as an optimization problem. As
for MEM, the consistency between the measurement
and the estimation of temperature acts as a constraint of
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Nomenclature

0

nth constraint

sensor location

unknown surface heat flux

original surface heat flux

surface heat flux vector

a nominal heat flux

total sum of the heat flux components
entropy functional

residual functional

thermal conductivity

length of the domain

total number of heat flux components
number of subdivisions

number of configurations

total number of spatial nodes
probability

random number

time
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te final time

T computed temperature

To initial temperature

X distance from the heated surface
Y measured temperature

o thermal diffusivity

At time interval
convergence criterion
A, nth Lagrange multiplier

)

o standard deviation of the measured tempera-
ture

Subscripts

exact exact data

i index for heat flux component or time step
index

m configuration index

max maximum

Superscript
+ non-dimensionalized

the optimization problem. The object functional of the
optimization problem is the information entropy that is
defined by Shannon [16]. Jaynes [17] proposed to use the
information entropy in the field of statistical mechanics.
By achieving the maximum state of the information
entropy, uncertainty caused by the noise contained in
the measurement data can be eliminated. MEM enables
to obtain maximum possible information from given
measurement data with limited accuracy. That is, if an
inverse solution is a maximum entropy (ME) solution, it
is the most likely solution among the candidates of many
inverse solutions, which are consistent with the
measurement data. This approach ensures the unique-
ness of the inverse solution as well as the stability.

The entropy functional has a logarithmic form and
the constraint has a quadratic form. Consequently, the
solution procedure requires a non-linear constrained
optimization. The non-linearity gives rise to computa-
tional difficulties. In the present study, the successive
quadratic programming (SQP) is employed as a solution
method for the optimization problem [20]. SQP is a
general and straightforward method applicable for non-
linear constrained optimization.

This work considers a typical one-dimensional
IHCP. The reconstruction of a positive time-varying
heat flux is conducted for varying measurement error
levels and heat flux forms. Especially, impulse test is
performed to investigate the deterministic characteris-
tics of the scheme. The results of the proposed method
based on MEM is compared with a conventional
method in terms of the resolution and the bias of the
solution.

2. Problem statement and governing equations

A finite one-dimensional slab with length L as illus-
trated in Fig. 1 is considered. The left side of the slab is
exposed to unknown heat flux f(¢) and the right side is
insulated. Material properties are considered constant
over the entire domain. The measured temperature Y (¢)
is acquired at a fixed location x = d. This problem is one
of the most investigated inverse problems.

2.1. Direct problem

The governing equation for the one-dimensional heat
conduction in a solid medium with constant material
properties can be written as

—> Y(¢)

f@o—>

’

e d_
< L >

Fig. 1. One-dimensional domain considered in this study.
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where T is the temperature, « is the thermal diffusivity of
the solid and x and ¢ are the space and time variable,
respectively. The corresponding initial condition is

T(x,0) = To(x), (1b)

where Tj(x) is the initial temperature distribution.
The boundary conditions are stated as

o

| =r, (1¢)

x=0

where k is the thermal conductivity of the solid.

6_T
Ox

=0. (1d)
x=L
Direct solution of the problem gives temperature as a
function of location and time for given initial and
boundary conditions assuming the surface heat flux f(¢)
as known. Thus, temperature for a particular function
f(¢) can be denoted as T'(x,¢; ).

2.2. Inverse problem

Through inverse analysis, the unknown condition
which is consistent with temperature observation can be
estimated. The temperature at x = d is measured as a
function of time Y (7). If Y(¢) is free from measurement
error, f(¢), which satisfies the expression

Y(t) = T(x, 6, f) )

can be the exact inverse solution. As is widely known,
however, the direct imposition of Eq. (2) may result in
erroneous and unstable oscillation since f(¢) is prone to
measurement errors [1]. It is reasonable to select the
following mean-square residual as a deviation measure
for a sensor.

a0 - | "1, - Y0P 3)

In general, f(¢) approaches the exact solution as J(f)
decreases. However, when J(f) becomes smaller than a
certain value, f(¢) starts to oscillate unexpectedly for
noisy measurements. Therefore, a proper smoothing of
the solution is essential. The degree of smoothing must
be optimally controlled and proper criterion for the
control needs to be established. If constant error level ¢
is assumed throughout the measurement, the following
expression is admissible [2].

T(d,t;f)—Y() = o, (4)

where ¢ is the standard deviation of the temperature
measurements. Then, the target value of the residual can
be set as [2]

J(f)=7c’n, ()

where # is the final time for the measurement. Most
practical inverse methods admit f(¢) approximately sat-
isfying Eq. (5) as an inverse solution. Let us refer to such
a solution as a feasible solution and refer to the above
equality as a feasibility condition. A feasible solution is
accepted as a solution that is statistically consistent with
the measurement data. The regularization method (RM)
with the least-squares method attempts to satisfy the
condition via proper selection of the regularization pa-
rameter [8]. The sequential function specification method
(SFM) controls the solution by a proper selection of the
future time step and the function shape [1]. Instead, the
conjugate gradient method (CGM) determines the solu-
tion by stopping the iteration on the condition that
J(f) < ot utilizing the viscous nature of the algorithm
[2]. With the use of available means, each conventional
method can achieve a feasible solution.

Despite the practical usefulness and wide acceptance
of the conventional methods, the following problems
concerning smoothing control and uniqueness of solu-
tion can be addressed. First, parameters such as the
regularization parameter, the future time step and the
number of iterations have loose relationships with
physical nature and statistical uncertainty. The physical
interpretations of these parameters in plain words are
somewhat difficult and ambiguous. Thus, an approach
that excludes additional parameters and reflects the
uncertainty level directly on the inverse solution is more
desirable. Second, as the solution obtained by the con-
ventional methods depends on the path along which the
solution is sought, the achieved solution varies accord-
ing to the selection of the method for the identical
temperature readings. In other words, the solution is not
a unique one but just one of the admissible or feasible
solutions. The conventional methods including RM,
SFM, and CGM, can provide similar but different
solutions for the identical IHCP. However, in terms of
accuracy, the solution closer to the exact solution is
preferred to other feasible solutions. A postulation can
be made such that the unique solution exists among the
feasible solutions which is statistically most likely for
given measurement data [23]. Therefore, it is required to
reformulate the inverse problem to determine the most
likely solution. This study introduces the maximum en-
tropy method (MEM) to IHCP to find such a solution.
The way MEM achieves the most likely inverse solution
and the manner in which MEM is implemented for
IHCP are presented in the following section.

3. The maximum entropy formulation

As previously stated, the inverse problem is refor-
mulated to seek the most likely solution among many
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feasible ones. In this study, MEM is adopted to serve the
purpose. Firstly, the maximum entropy principle is in-
troduced. The entropy functional which can measure the
likelihood is defined. Secondly, the inverse problem is
stated in the form of a non-linear constrained op-
timization. Most conventional inverse methods for
THCP can be regarded as unconstrained optimizations,
which aim to achieve the feasibility condition only. On
the other hand, the current optimization problem for
MEM considers the entropy functional as an object. The
feasibility condition given by Eq. (5) becomes a con-
straint. This feature enforces THCP to be reformulated
into a non-linear constrained optimization problem.

3.1. Maximum entropy principle

Consider N identical partitions as shown in Fig. 2.
In the ith partition, a number of quantized heat
fluxes, f;, are stored. The total number of heat flux
quanta F is

F=3) [ (6)

The value of F is to be known a priori with acceptable
accuracy. The total number of ways of obtaining a
particular configuration, denoted by NC, is given by [18]

Fl
ARl AT @)

where f = {f, f2,..., /v }-

For an arbitrary configuration f,, where m is an index
which denotes a particular configuration, the probability
of a specific configuration Pr is of the form

__NC(f.)
- XN

If a configuration f,, makes the probability maximized,
the configuration f, can be accepted as the most
probable or likely configuration. Because the denomi-
nator of the above expression is constant, Pr(f,) is
maximized when NC(f,) reaches the maximum. Re-
moving the index m and applying Stirling’s formula, we
have [23]

NC(f) =

Pr(f,) (®)

NC(f aexp[ Zfln 9)

Here terms of lower order are neglected. Maximizing
NC(f) can be achieved by

Zfln£ (10)

i=1

Maximize H(f) =

Here H is called the information entropy [16]. Generally,
the entropy in an isolated system never decreases, i.e.,

fl‘+{"2+...+fl;+...+f:v\:F

/ / \ N

I S N I N U

Fig. 2. Illustration of the partition and the distribution of heat
flux quanta.

spontaneously tends towards the maximum value pos-
sible. In other words, since MEM reflects such property
of nature, it searches the most natural solution rather
than the smoothest solution. As a result, MEM enables
us to minimize additional assumptions and information.
On the contrary, the regularization method [8] needs
careful selection of the regularization parameter, and the
sequential function specification method [1] requires the
number of future time steps and the functional form of f.
In addition, MEM guarantees the uniqueness of the
solution of ill-posed or even underdetermined inverse
problems. Among the feasible solutions that satisfy the
feasibility condition (Eq. (5)), the one that maximizes
the entropy functional is accepted as the inverse solu-
tion. In this way, the uniqueness is guaranteed and the
most likely solution can be obtained. A rigorous proof
of the uniqueness is presented in the literature [18].
Above all, the most notable merit of MEM is that the
enhancement of resolution and the suppression of noise
are achieved at the same time. A detailed and compre-
hensive review of the characteristics of MEM can be
found elsewhere [23].

4. Optimization problem statement

If constant time interval is assumed, the following
expression is valid:

tr = NAt, (11)

where At is the constant time interval between each
measurement. Generally, a non-linear equality like Eq.
(5) is difficult to treat as a constraint. Hence, it is replaced
by a tolerable criterion. The optimal control criterion is
given by the following inequality [21]:

|/ — No*At| < V2NG*At. (12)

The purpose here is to find the maximum entropy (ME)
solution which maximizes H among feasible solutions.
Therefore, the following statement can be made as an
optimization problem:

Maximize the objective function H(f)
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Subject to
Nonlinear equality constraint
Ci(f)=J —Na*At=0 (13)

with the maximum violation of v2Na?At,

Linear equality constraint
N
G =) fi-F=0, (14)
=

Bounds 0 < f;<F. (15)

Here the inequality constraint (Eq. (12)) is treated as an
equality constraint of the optimization problem by set-
ting v2N62At as the maximum violation of the equality
constraint. The corresponding Lagrangian function can
be written as

L=H-A,C,, n=12, (16)

where C, denotes the constraints, and 4, is the Lagrange
multiplier corresponding to each constraint. It is noted
that the total sum F and the standard deviation ¢ are to
be known a priori. In summary, MEM finds a unique
distribution of the time varying heat flux with given F
and o under the assumption that the desired distribution
is obtained via maximizing the entropy functional H. In
order to perform the above optimization, a solution
strategy must be carefully selected because of the non-
linear nature of H and J.

5. Solution procedure

The current approach requires more computational
efforts compared to the conventional methods due to the
requirement of the constrained optimization. Further-
more, the evaluation of the entropy functional requires
the total sum F of the heat flux components f; to be
known a priori. In most cases, it is impractical to acquire
the total sum in advance as provided data. In order to
evaluate the total sum and provide the initial value for
ME estimation, the conjugate gradient method (CGM)
is utilized. CGM is based on the adjoint formulation
which facilitates the evaluation of the gradient in an
analytical manner [2]. The present method utilizes the
adjoint formulation. Besides the evaluation of the total
sum and the initial value, the gradient is also required
for the ME estimation. It is provided by solving the
adjoint problem which is solved to evaluate the gradi-
ents in CGM. In summary, the current approach is
comprised of two computational phases. The first phase
achieves a feasible solution by CGM. The second phase
starts with the result of the first phase as an initial guess
to estimate the ME solution. In the present study, the
SQP is adopted to perform the optimization for the
second phase.

5.1. First phase

A preliminary analysis is performed to provide the
total sum and the initial guess for the ME estimation.
Due to the energy conservation, the conventional inverse
estimators for IHCP are capable of evaluating the total
of the heat flux components (F = SV | f;) with accept-
able accuracy despite some local biases [19]. As stated
earlier, CGM is used for the first phase. It is noted that
the gradient is evaluated by solving the adjoint problem
and the step size along the conjugate direction is deter-
mined utilizing the solution of the sensitivity problem
without exhaustive line search. The adjoint formulation
involving the adjoint problem and the sensitivity prob-
lem is already derived in complete and sound form by
Alifanov for the one-dimensional case [2]. The pro-
cedure is not repeated here.

5.2. Second phase

In order to seek the solution of the prescribed non-
linear constrained optimization problem, the SQP is
utilized [20]. SQP searches the desired optimum by re-
peating the following three steps consecutively: (i) ap-
proximation of the Lagrangian function in the
quadratic form and the constraints in the linear form;
(ii) determination of the search direction; (iii) control of
the step length along the search direction with a proper
penalty. SQP requires evaluation of the Hessian matrix
and the gradient vector of H and J. The gradient vector
of J can be obtained by solving the adjoint problem.
The solution of the adjoint problem requires the esti-
mated heat flux and the difference between the mea-
sured and the estimated temperatures. Both of them are
available readily from the result of the previous itera-
tion and the gradient can be easily evaluated during the
optimization procedure. The Hessian matrix of J can
be expressed as

" 3T oT T
VW= | —=—dt+ | ——[Td,t;f) - Y(©)]dt,
i=1,...,N, j=1,..N. (17)

The second integral term on the right-hand side is neg-
ligible since the second-order sensitivity 0*7/9/,0f; can
be neglected for a linear IHCP (with constant thermo-
physical properties). As the first integral term forms a
positive-definite matrix, VVJ can be regarded as posi-
tive-definite. However, it is not a simple task to evaluate
VVJ directly in the adjoint formulation. In this work,
VVJ is approximated by the Broyden—Fletcher-Gold-
farb—Shanno (BFGS) update formula for computational
efficiency and convergence [20]. Meanwhile, the evalua-
tions of the gradient vector and the Hessian matrix of H
are rather straightforward.
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vH:_(an;Jrl), i=1...,N, (18a)
1
VVH=7*5U’ i=1,...,N, j=1,...,N, (18b)

/i

where d;; is the Kronecker delta. The Hessian matrix of
H is negative-definite and diagonal as shown above. As
both Hessian matrices of the objective function and the
non-linear constraint are sign-definite (i.e., convex), the
global optimum can be achieved with uniform conver-
gence [20]. Here the convergence is checked by the fol-
lowing criterion:

Hk+1 _ Hk

T <, (19)

where k indicates the number of iterations and ¢ is chosen
to be 1073, In this study, SQP is implemented by an ex-
isting computer code, CFSQP [25]. The code is slightly
modified to allow VVH to be provided by Eq. (18b) and
to accommodate the above convergence criterion.

5.3. Discretization

Both phases require the numerical evaluation of
temperature 7'(x, ¢; /). This work adopts the finite volume
method [22] with Crank—Nicolson scheme for the dis-
cretization in time and space. The spatial domain shown
in Fig. 1 is discretized with M nodal points with equal
spacing. In IHCP, the time step size for the discretization
usually is identical to the measurement interval Az. When
the measurement interval is not sufficiently small, the
solution may include considerable error due to incorrect
integration in the time domain. In order to improve the
accuracy, the time step is divided into a number of sub-
divisions. The number of subdivisions is defined as a
preset number N,;. The estimated value of the heat flux
and the measured data are available only at the discrete
points. Accordingly, the linear interpolations are utilized
for the intermediate points. This subdivision scheme is
applied to the direct problem, the sensitivity problem and
the adjoint problem at the same time.

6. Results and discussions

A few test cases are solved to verify the stability and
accuracy of the proposed method. One-dimensional
IHCP is investigated for different heat forms of heat
fluxes, namely impulse and triangular heat flux. The heat
fluxes estimated with MEM are compared with the
original heat flux and the heat flux estimated with CGM.

6.1. Measurement data simulation

Test cases have been performed using measurement
data artificially generated with and without errors. The

errors are embedded to the exact data by the following
equation:

Yi:chactai+Jria izlw-'aNa (20)

where r; is a normally distributed random variable with
zero mean and unit standard deviation. The random
variable is generated by the IMSL® C function ran-
dom_normal [26]. The exact data Y.y, ; are obtained ei-
ther by analytical or by numerical solution depending on
the situations. The deterministic nature due to the nu-
merical discretization error is investigated by comparing
the recovered heat fluxes with the exact value obtained
analytically or numerically. The necessity of the time
step subdivision is also demonstrated for the impulse
heat flux. The solution procedure for the exact data is
presented elsewhere [1].

7. Definition of deviation measure and non-dimensional-
ized variables

In order to evaluate the bias of the inverse estima-
tion, the following expression is chosen as a deviation
measure:

[ )
D= ﬁ;(ﬁ—ff), (21)

where f is the ith heat flux component of the original
heat flux.

The non-dimensionalized variables are defined as
follows.

xt=x/L, "= Z—z, Fo, = Z—; (22a)
T —Tq
SYES M T =2 (22b)

where T; and f; are the nominal values of the tempera-
ture and the heat flux, respectively. Above non-dimen-
sionalized values are used for presentation of the results.
All the cases are tested under the identical condition
L=o=k=fy=1,T, =0 for simplicity. As a result,
xt=x,t" =t fr=fand Tt =T.

7.1. Verification with impulse heat flux

Raynaud and Beck suggested a dependable method-
ology of testing methods for THCP [12]. In order to
examine the trend of deterministic error, the test with
impulse heat flux presented in the above work is applied
to the proposed scheme. The impulse test is known to be
the most stringent test of an IHCP algorithm. This test
considers the recovery of the heat impulse which has
non-zero, positive value only over a single time step (see
Fig. 3). The impulse test is performed under the identical
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Fig. 3. Comparison of the heat flux estimated by MEM with the heat flux by CGM. Estimation performed with exact measurement
data generated numerically for (a) single impulse and (b) two adjacent impulses.

condition suggested in the referenced work
(At =0.01(AFo; = 0.04), tt =025, d =0.5 and M =
21). It is noted that the superposition of impulses of
different strengths enables representing any time-varying
heat flux. The impulse heat flux is given by (see Fig. 3)

1, 9.5A1<1<10.5A,
ro={,

elsewhere.

The standard deviation ¢ is 0 for the exact measurement
data. However, the smallest value of the residual func-
tional J reachable by the present method is limited by
errors induced by discretization, round-off and the
number of significant digits of the measurement data.
Therefore, whenever errorless data are used, o is set
equal to 1075,

Figs. 3(a) and (b) show the comparison between of
the heat fluxes estimated by MEM and CGM. For this
test run, the exact measurement data generated by the
numerical calculation and the exact total sum are used.
The result with CGM shows a smeared distribution
centered on the impulse as shown in Fig. 3(a). The value
of \/J/(NAt) decreased to 3.7 x 10~* in 25 (equal to N)
iterations. However, ever after 500 iterations it could not
be made smaller than 3.1 x 10, which is required for
estimating the presented result with CGM. On the
contrary, the heat flux estimated by MEM shows nearly
no bias, as can be seen in the figure. Such behavior of the
inverse solution is known as super-resolution [24]. In
order to test MEM for the more critical conditions, a
test case with heat flux for two adjacent impulses is
considered. The distance between each impulse is Az.

Fig. 3(b) shows the comparison between the results
by MEM and CGM for the two adjacent impulses. For

(23)

results by MEM, two peaks are apparent without much
smearing of the solution for the ME estimation as shown
in the figure. On the contrary, the result by CGM ex-
hibits a widely spread curve with single peak at the
center of the two impulses. The resolution obtained by
MEM is not possible by linear inversion techniques. The
resolution of linear methods is restricted by the so-called
Rayleigh limit [23].

As can be seen in the previous results, MEM can find
a solution with nearly no deterministic error when the
measurement data and the total sum are exact. If the
total sum is not known a priori, the total sum has to be
determined from a solution by CGM. Due to the energy
conservation, the estimated value of the total sum can be
approximated to the exact value. However, the esti-
mated total sum may include an error to some extent.
For example, the total sum of the solution with CGM
shown in Fig. 3(a) is 0.983, where the exact value is
equal to 1. Therefore, in order to investigate the effect of
incorrect total sum, the impulse tests are done for
F =0.5,0.8,09,1.1 and 2.0. Fig. 4 show the heat fluxes
estimated using the corresponding value of the total
sum. The numerically obtained data without error are
generated for comparison. The underestimation of the
total sum renders the peak location backward by as
much as 2A¢ for F = 0.5. For F = 0.8, amount of the
backward shift is improved to Af as shown in Fig. 4(a).
Both the location and the peak value are not estimated
properly for F = 0.5 and F = 0.8. However, in the case
for F =0.9, the peak location is accurately predicted.
Therefore, it can be presumed that small amount of
error in the total sum can be allowed and the total
sum obtained using CGM is still valid for most ME
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Fig. 5. Comparison of the heat fluxes estimated by MEM (a) with and without subdivision for ¢ = 0 and (b) with subdivision for
¢ = 0.0001,0.001 and 0.01. Estimation performed with measurement data generated analytically for single impulse.

estimations. For values of F larger than unity, the peak
locations are exact, as can be seen in Fig. 4(b). The
amount added to the exact value of F augments only the
least significant component fy among the heat flux
components. Because the heat flux component at the
final time fy has no effect on the measurement data,
augmentation on fy does not influence the residual

functional J. Therefore, F values larger than 1 do not
result in instability. It only brings about distortion of the
solution.

Fig. 5(a) shows the heat flux estimated using the ex-
act total sum and the exact measurement data from the
analytic solution. The time step subdivisions of N, =1
and N, = 10 are considered for this case, respectively. As
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can be seen in the figure, the estimated heat flux for
N, = 1 deviates considerably from the exact form due to
coarse discretization used for the direct problem and the
adjoint problem. On the other hand, such bias is nearly
eliminated with more refined subdivision (N; = 10). The
subdivision technique is thought to be effective based on
this example despite the possible inaccuracy caused by
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Fig. 6. Comparison of the heat fluxes estimated by MEM for
different number of heat flux components N. Estimation per-
formed with measurement data generated analytically for single
impulse. Computations are performed on a PC equipped with
Pentium processor.
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the linear approximation. Therefore, it is possible that
controlling stability by time step may yield inaccurate
inverse solution.

The case with impulse heat flux is also considered in
the presence of error in the measurement data. The
measurement data are generated using the analytic so-
lution. The error is embedded as was previously de-
scribed. The time step subdivision of N; = 10 is used.
For the different error levels (¢ = 0.0001,0.001 and
0.01(~ Ymax)), the heat flux has been estimated. The re-
sults are shown in Fig. 5(b). Each curve exhibits ac-
ceptable results for different error levels. The heat flux
estimated for ¢ = 0.0001 is nearly indistinguishable with
the result shown in Fig. 5(a) which is recovered with the
exact measurement data. In the case of ¢ = 0.001, clear
peak is observed despite the presence of a noticeable
error. The result is severely smeared for ¢ = 0.01 due to
the extremely high disturbance in the measurement data.
Although smeared, the result is thought to reveal the
maximum information extractable from the disturbed
data. As the increased error level enforces the inverse
solution to be further ambiguous, additional informa-
tion is necessary to resolve the ambiguity. Such infor-
mation can be obtained via maximizing the entropy
functional, and hence, the ME estimation can be used
for measurement data with larger errors.

In order to investigate the effect of the number of
unknown heat fluxes N on accuracy, an impulse test is
performed. This test considers the ME estimation of the
exact heat flux shown in Fig. 6 using noisy measure-
ment data from the analytic solution. The parameters
are ¢ = 0.0001, N; =10, r = 0.1. As N increases, the

12—
r Varying dimensionless standard deviation, ¢ 1
1+ _
[ Exact ]
o [ --¢--0=0.0001 . CGM |
N 08 (D=0.10) . E
x r 4
= s 1
= P J
2 0er ]
12}
173 r 4
< L i
=
o 04 B
(72} L 4
o
Q r 4
£ i ]
o 02 -
0
-0.2 L | | | | ]
0 0.05 0.1 0.15 0.2 0.25
Dimensionless time,
(b)

Fig. 7. Comparison of the heat fluxes estimated by (a) MEM and (b) CGM for different error levels ¢. Estimation performed with

measurement data generated analytically for triangular heat flux.
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estimated heat flux becomes closer to the exact heat flux
as can be seen in Fig. 6. At the same time, computa-
tional time increases drastically. Therefore, a proper
trade-off between the accuracy and the cost has to be
made.

7.2. Vertfication with triangular heat flux

Figs. 7(a) and (b) show the recovery of a triangular
heat flux with MEM and CGM, respectively. The esti-
mations have been conducted for ¢ = 0.0001,0.001 and
0.01 with N; = 10. The measurement data are generated
analytically. All the heat fluxes reconstructed with
MEM clearly show the apex at 7 = 0.13 as can be seen
in Fig. 7(a). Furthermore, the results for ¢ = 0.0001
and 0.001 agree quite well with the original heat flux in
the entire domain. On the contrary, the heat fluxes re-
covered with CGM reveal considerable biases as shown
in Fig. 7(b). Besides, smearing of the solution is ob-
served. However, the difference between the deviation
measures for MEM and CGM is greatly reduced in
comparison with the difference for the impulse heat flux
(see Fig. 3).

8. Concluding remarks

MEM is a non-linear inversion technique, which can
enhance the resolution of the inverse estimation. The
philosophy of MEM lies in seeking the most natural
solution by accepting the principle of the spontaneous
increase of entropy. MEM enables one to obtain the
unique solution independent of the path and the
method of optimization. The smoothing degree of in-
verse solution is controlled only by the error level of
measurement data. It is independent of the optimiza-
tion method [2] and can do without all other parame-
ters like the number of future time steps [1] and the
thermal wave speed [10] which may cause inevitable
deterministic bias.

MEM is confined to positive heat flux reconstruction
in nature. However, heat fluxes in many applications do
not change sign in the entire time domain. The re-
quirement of the total sum as a priori information can
be satisfied by the preliminary estimation using CGM. If
the accurate total sum is available, reliability of the es-
timation can be further improved. It is also noted that
MEM calls for a lot of computational resources due to
the non-linear constrained optimization. Although bet-
ter resolution can be achieved apparently by increasing
the number of unknowns N for the fixed time interval, N
is to be determined considering the computational cost
as shown in the result.

In this study, MEM is utilized for a linear one-di-
mensional IHCP. The results show reasonably good
agreement with the exact heat flux. Whatever error level

of the measurement might be, the proposed method is
able to find the most statistically consistent result in a
stable manner. A measure of improvement in resolution
is achieved as can be observed in the presented results.
The method is verified to be valid for quantitative ac-
curacy enhancement of the heat flux recovery. MEM can
be easily extended to other IHCPs and is expected to
yield improved results.
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